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In words, the uncertainty that remains about the value of §;, summarized by
the posterior distribution of §;, is such that we assign probability .025 to the
possibility that §; is less than b; - 1.96 s(b;IR,1, . . . , R;u1). Likewise,

Bi - b
MA@L”E—“ s v”wlﬂ.v

Pr|f=

> 1.96|=.025,

or

Pr[B;>b;i+1.965(®;|Rpmy,...,Rmr)] =.025, (62)

so that we assign probability .025 to the possibility that §; is greater than
b;+196s(b;|Rmy s - - - s Rpyr). Finally, combining equations (61) and (62),
the posterior uncertainty about §; is such that we assign probability .95 to
the possibility that §; is in the interval

[bi- 1.965(b; |Rmy» .- - s Rmr)] to [b;+1.965(Bi 1Ry, - - - s Rmr)]. (63)

Expression (63) is numerically identical to the classical .95 confidence
interval of (58) when applied to a specific sample. When one takes the
Bayesian viewpoint, however, the probability statement made from the sam-
ple confidence interval is more direct than in the classical approach. In the
Bayesian approach, there is no talk about a hypothetical sample or repeated
samples. One simply says that the probability that §; is in the interval given
by (63) is .95.

If there is some special interest in a particular possible value of §;, then the
Bayesian can use the posterior distribution of WN to make a direct probability
statement about the value of interest. For example, if for [BM there is special
interest in the possibility that §; = 1.0, the Bayesian computes

- Bi — by _10- .67
s\ Ropts . . Ropp) 13

From Table 1.8 he then determines that the posterior probability that §; is
greater than 1.0 is about .005. In other words, the posterior distribution
assigns low probability to the possibility that g; is as large as 1.0. Again, un-
like the classical approach, the probability statement is made without refer-
ence to repeated samples.

t =2.54. (64)

V1. Conclusions

We have spent much time discussing the market model and its estimation
from a theoretical viewpoint. We pass on now to the data.

CHAPTER

The Market Model:
Estimates

The first step in applying the estimation techniques of Chapter 3 to stock
market data is to give a detailed example for an individual stock. Then sum-
mary results for two samples of 30 stocks are presented, after which we ex-
amine some of the practical problems associated with fitting the market
model.

I. Estimating the Market Model: A Detailed Example

A. The Market Model: Summary of Equations and Properties

It is helpful at this point to summarize the market model equations. Bivar-
iate normality of R;; and R,,, implies that the regression function of R;, on
R,,,, the expected value of R;,; conditional on R,,,, is

ERuIRm) =i+ BiRmes t=1,...,T, (1)
with

cov R; ,m ~ ~
p."i%% w,:v and o =ER;) - BERpy), 1=1,....T. ()
mt
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The relationship between R;, and R,,, implied by bivariate normality can be
described as

Ry=a;+ iR+ &, t=1,...,T, 3)

where the disturbance €;, has mean zero and is independent of R mt» SO that
E(€IRpmy) =E(€;;)=00, t=1,...,T, 4)

0*(Rit| Rms) = 0% (Eit| Rpme) = 62 (Eir) = 2(&)), t=1,...,T, (5)

cov (€, Rppe)=00, t=1,...,T. ®)

It is also helpful to restate the properties of the correlation coefficient p;,,
between R;; and R,,,; that are described in Chapter 3. Thus,
cov Ax-.? xwxuv

Pim=—=——m———, t=1,...,T 7N
" 0(Ri) oRome)

and
F(&) = Ri) (1~ p,), t=1,...,T, ®)
so that
2(n 20
2 o O (Ri)- o' (&)
pl = = , t=1,...,T. 9
o 0*(R;r) ©
Since the independence of €;, and m:: implies
PR =B R+ X&), 1=1,...,T, (10)

the square of the correlation coefficient, henceforth called the coefficient of
determination,

' Rir) - @) _ B0 Ronr)
0*(R;r) o Am:v

is the proportion of Em variance of m: that can be attributed to the market—
ﬁz?..: is, to the term §;R,,,; in the market model relationship between m: and
R, of n@:m:on (3)—while 1 - p? is the fraction of o? (R, that can be at-
tributed to €, the error or disturbance of the market model relationship
between K, and Ry

Since the estimation techniques of Chapter 3 are based on the assumption
that the joint distribution of m: and m:: is the same for each month of the
sampling period, the assumption is maintained in this chapter. We indicate
this in the preceding statement of the properties of the market model by
appending the notation # =1, ..., T to each equation. Since all properties of
the joint distribution of w: and m:: are constant or stationary during the
sampling period, there is no need for a subscript ¢ on any parameters. We

Pk, = , t=1,...,T, (11)
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make use of this prerogative in writing a;, f;, and p;,, without 7 subscripts,
but in other cases the prerogative goes unused.

B. Market Model Estimates for IBM

The estimators of the market model coefficients f; and &; involve mccw:::-
ing unbiased estimators of £ R;),E R, 0 2(R,ns), and cov (Rip, R R,¢) into
(2). The unbiased estimators of these parameters are

T .
2 Ry 2 Rme
m..nm"l_ﬂ| and ms"n_lﬁl 12)
T ~ ~
> Rme-Rm)?
s*Rp) = ?.IN,.L|| (13)

T -~ >~ ~ >
2 Rit=R) Ryt~ Rpy)

~ =1
Sim = =1 , (14)
so that the estimators of §; and o, are .
v
H.. ~ o ~ -3
~ M R - NKVAkialziv
> Sim t=1
b, = -~ = Ammv
2 R) T s
M QNSnlxiv
t=1
m\..ﬂmml Wmms. Aumv

Recall that techniques or procedures for estimating parameters, like those
described in equations (12) to (16), are called estimators. When such tech-
niques are applied to. particular samples of data, the numbers that they
produce are called estimates. An estimator is a random variable, which we
indicate with the usual tilde. An estimate is a drawing from the sampling
distribution of the estimator, so that when an estimate is referred to, the tilde
is dropped. The reader should check that these words and notation are used
consistently in what follows.

Suppose now that the common stock i of interest is the common stock of
IBM, and we wish to estimate f; and &; from the monthly returns on IBM and
the equally weighted market portfolio m for the five-year period from July
1963 through June 1968. In this chapter, m includes only NYSE common
stocks. The monthly returns, R;; and R,,;, are shown in Table 4.1. From
equation (15) we can see that to estimate §; and @;, we must first compute
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TABLE 4.1
Monthly Returns, Rie, on 1BM and on Ry, the Equally Weighted
Version of the Market Portfolio, for the Period
July 1963-June 1968

MONTH  Rj Rmt MONTH  Rj; Rmt
7/63  -.0040 -.0095 1/66 -.0060  .0435
8/63 0259  .0506 2/66 0413 0109
9/63 0163 -.0184 3/66 0019 -.0219

10/63 0929 0163 4/66 0804  .0337
11/63  -.0162 -.0068 5/66 -.0220 -.0724
12/63 0448 0075 6/66 -.0296 -.0048
1/64 0690  .0201 7/66 -.0278 -.0127
2/64 0521 0270 8/66 -.0562 -.0931
3/64 0434 0314 9/66 -.0094 -.0143
4/64  -.0404 -.0031 10/66 0457 0127
5/64 0549 0116 11/66 1358  .0382
6/64 -.0063  .0154 12/66 -.0120  .0162
7/64  -.0314 0277 1/67 0754 1428
8/64  ~.0438 -.0090 2/67 0791 .0209
9/64  -.0091  .0370 3/67 0488 0520
10/64 -.0378  .0170 4/67 1009 0365
11/64 -.0149 0007 5/67 -.0352 -.0179
12/64  ~.0073 -.0069 6167 0670  .0516
1/65 0952  .0587 7/67 0206  .0709
2/65 0195 0278 8/67 -.0136  .0028
3/66 -.0033  .0053 9/67 0970  .0378
4/65 0677  .0359 10/67 0825 -.0359
5/66 -.0113 -.0079 11/67 0330  .0067
6/65 -.0418 -.0743 12/67 0245 0554
7/65 0459  .0291 1/68 -.0518 -.0035
8/65 0449 0451 2/68  -.0222 -.0416
9/65 0271 .0308 3/68 0560  -.0045
10/65 0400 0474 4/68 1061 1164
11/65 -.0122  .0300 5/68 .0568  .0686
12/65  -.0495  .0327 6/68 -.0001  .0192

the sample means R; and R,,,. Applying (12) to the returns in Table 4.1 (and
the reader may find it instructive to check the calculations that follow), we
get

1.2694 ~ 9739 _
== S92 Ry====0162

R;
Thus, the average monthly return on IBM is 2.12 percent, while the return on
the market portfolio is 1.62 percent per month. During this period the share-
holders of IBM did quite well, but the market portfolio also had a substantial
average monthly return. The sample mean returns, the returns in Table 4.1,
and equations (13) to (16) can now be used to compute
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089421

59
060315

Sim = —5g— = 001022

06031
= S—— = 6745
bi 08942

0212 - .6745(.0162) = .0103.

S (Rpm) = 001516

a;
Thus, corresponding to the regression function of equation (1), we have the
estimated regression function

~

Riy=a;+b;Rpm.
0103 + 6745R ;.

Corresponding to equation (3), we have the estimated market model equation

Riy=a;+biRps *eir
= 0103 + .6745R,,,; + €;is.

The results of the computations are perhaps best appreciated from Fig-
ure 4.1, which presents a plot of the sample points (the sample paired values

FIGURE 4.1
Plot of Sample Points and Estimated Market Model Regression Function for I1BM for
July 1963-June 1968
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of R;; and R,,,), indicated by stars, and of the estimated regression function.
The slope of the line is b;, and 4; is the point on the line where R,, = 0.0.
The residual e;, for any sample point is the vertical distance from the dot
corresponding to that sample point to the point on the estimated regression
function along the (imaginary) line from the dot that is perpendicular to the
R,,, axis. One such residual is indicated in the figure.

C. The Fit of the Estimated Regression

The impression given by Figure 4.1 is that there is a relationship between
the monthly returns on a share of IBM and the monthly retumns on the market
portfolio 7, and the relationship appears to be linear. But it does not seem to
be strong, since the dispersion of the sample points around the estimated re-
gression function is substantial. There are several ways to give formal content
to this visual impression.

First, from the equation (10), the disturbance variance o?(€;,;) measures
that part of the variance of the return on security / that cannot be attributed

to the market model relationship between m: and m::. The unbiased estima-
tor of 02(&;,) is

m

(@)= T a7
Applying this estimator to the residuals for IBM we get
09164
uNAm..v = |mwl. =.00158.

Using the unbiased estimator of 0*(R,,),

M R «NNDN
2PNtz
PR)= (8)
we can also determine that
13260
s2(R)="—"—""— =
R 59 00225.
Since
s2(e; .00158
IINA ) _ 00158 _ 702,
s*(R;) .00225
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the sample estimate is that slightly more than 70 percent of the variance of
R; ;¢ is unexplained by the market model relationship between x: and k::.
Conversely, since

N n 2
£) _SER)- e g 19
®R)  SR)
slightly less than 30 percent of the sample variance of m: can be attributed to
the estimated market model relationships between R iz and R mt
There is another approach to the same question, and it gives a m__mrz% dif-
ferent answer. Just as equation (10) says that the variance of R;; has two
components, so we know from Section III of Chapter 3 that

1.0-

~

N- ~ =
M QNR - %_.vu
t=1

that is, in any sample the sum of squared deviations of m:. from its sample
mean can be split into “‘explained” and residual sums of squares. Moreover,
from Section I1I of Chapter 3 we also know that the sample coefficient of
determination (the square of the sample correlation coefficient), which is
defined as

o, L~ o T ~
=5 Y Ru- R+ X & (20)
t=1

t=1

e (i on
r. = ~ ~ s
o uﬁm..v s(R,),

can be expressed as

F2 = = —m (22)

Thus, e.us ogcosaa%am»oammﬁraQmo:onOmﬁrowaEa<ﬁE=80m x:
that can be attributed to the fitted market model relationship between m:
and R mt-

When equation (21) or (22) is applied to the monthly returns on a share of

IBM, the sample coefficient of determination is
= 307.

Thus, slightly more than 30 percent of the sample variance of R;; can be at-
tributed to the estimated market model relationship between R; it and R mt-
Note that (19) gives a slightly lower measure of the strength of the rela-
tionship between R, and R, than (21) or (22), even though the equations
purport to measure the same thing. Indeed, (19) and (22) are just the sample
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counterparts of the two versions of the population coefficient of determina-
tion given in equation (11).

Although they are closely related, (19) and (22) are not identical sample
quantities. The reason is that although equations (10) and (11) hold for the
population variances and aithough (20) holds for the sample sums of squares,
nevertheless

s*(R;) < B}s*(Rpm) + 5*(8). 23)
To see this, simply note that the estimators s2(R;) and %Axsv involve &Sa.
ing the sample sums of squares (K, - .v» and Z(R,; - Svu by T~

whereas in s2(€;) the sum of squared residuals e, is divided by 7 - 2. Zoa
also that if we define

pa < SRA-SE) g SC) (24
s*(R) PR’
then it follows from (23) that
b2s*(R 2(R) - s (¢
§2 o m.:.vv TR -s*() _ = Fer (25)

SRy s*(R) m

Because 72 takes account of the fact that the unbiased estimator s2(€;)
has fewer anm:wam of freedom than the unbiased estimators s?(R;) and

s*(R,,), 722 is usually called the sample coefficient of determination, ad-
justed for aomaow of freedom, whereas 72, is called the sample coefficient of
determination. In applications of the market model, the difference be-
tween these two measures of fit is usually negligible. Since the sample size T
is generally large, a correction involving one degree of freedom has a trivial
effect on the estimator.

For example, for IBM, the choice between wt = .298 and w =.307 is of
no consequence. In either case only about 30 percent of the meEm variance
of the stock’s return can ca attributed to the estimated market model rela-
tionship between w: and R,,;. Thus, the impression given by Figure 4.1—
that the estimated regression function leaves much of the variation in the
sample points unexplained—receives formal confirmation.

D. The Reliability of the Market Model
Coefficient Estimates for IBM

The estimate of §; for IBM from the monthly returns for July 1963-June
1968 is .67. From Chapters 2 and 3 we know that f; can be interpreted as the
risk of security i in the market portfolio m measured relative to o2 Qm::v, the
risk of m, which is also the average risk of all the securities in m. Since m in-

The Market Model: Estimates 107

cludes all the common stocks on the NYSE, the estimate b; = .67 suggests
that the risk of a share of IBM is substantially less than the average risk in m
of all stocks on the exchange. Alternatively, if one interprets B; as the market
sensitivity of security i, then the estimate b = .67 suggests that the return on a
share of IBM has substantially less than average sensitivity to marketwide
factors.

An estimate like b; = 67 is, however, just a drawing from the probability
distribution of possible values of the estimator m ; of equation (15). To draw
any conclusions from a specific estimate, one must measure its 8:»9_5\ The
first step is to compute the sample estimate of the variance of v From Chap-

ter 3, the variance of the estimator w: conditional on R,y , - . . , R, i8
e 0*(€ir) 0* (&)
2%, = = . 26
02 (bijIRmy»- - »Rmt) T- DR, (26)

T .
M Aw§u| kSv»
t=1

The variance of the estimator depends on the strength of the relationship be-
tween m: and m;:. as measured by the disturbance variance 0*(€;y); the
weaker the relationship—that is, the larger the value of ot (€;,)—the larger
the conditional variance of the estimator. The variance of the estimator also
depends on the sample size; the larger the value of 7', the smaller the condi-
tional variance of m... Analogous statements apply to the sample estimator of

the conditional variance,

2@ PE@) @

s2(BilRymy» -+ - Rm1) = ST DRRY

A 2
2 (Rme-Rp)
=1
where s2(¢;) is the estimator of 0®(€;) given by (17).
For IBM the estimate of the conditional variance of w for July 1963-June
1968 is

00158

=== 0177,
Rm1)= 8942

s2(b;| Ry, -

so that
s(biiRmy>» . .- Rmr)=1331.

This number seems to say that there is substantial uncertainty about the value
of B; for IBM, but let us try to give more formal content to this impression.
Recalling the discussion in Section V.C of Chapter 3, from the Bayesian
viewpoint, the uncertainty about f; that cannot be resolved by the sample at
hand is summarized by the posterior distribution on m_ For a large sample
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and given a diffuse prior distribution on u: the posterior distribution on
u: conditional on the sample values R,,,, ..., R,,, is approximately nor-
mal, with mean

mﬁw.._xi_ PRI uwwz%vn @.. = 6745

and standard deviation

0(BilRmys -+ s Rnr)=sbilRpys . .. ,Rppr) = 1331,
If we standardize mh. as
. Bi- EB; B -
7= \(Au-_x\:u. uxwxﬂ.v — F , AN@V
0(BilRmyr» - ., Re7) s Ry, - Rmt)

then we can use the unit normal distribution tabulated in Table 1.8 to com-
pute some fractiles of the posterior distribution and so get a more concrete
feeling for the uncertainty about the value of §; that the sample does not re-
mo_<m. For example, the 025 and 975 fractiles of the posterior distribution
on f; (corresponding to £ g,5 = ~1.96 and #9,5 = 1.96) are §; = 414 and
B; = .935. Likewise:

Some Fractiles of the Posterior Distribution of m.~ for I18M

Cumulative probability .025 .05 .10 .25 .50 .75 .90 .95 975
Fractile 414 455 504 585 674 .764 .845 .893 .935

These fractiles suggest that there is substantial remaining uncertainty about
the value of §;. The posterior probability is .25 that f; is less than .585, and
the probability is .25 that §; is greater than .764. Thus the probability is .5
that B; is outside the interval from .585 to .764. Alternatively, the Bayesian
50 percent confidence interval on §; is from .585 to .764; that is, the poste-
rior probability that f§; is in this interval is .5. Likewise, the interval from .504
to .845 covers a fairly wide range of possible values of §;, but the probability
that the true B; is outside this interval is .2, so that the interval is the 80 per-
cent Bayesian confidence interval for ;. If one prefers the classical to the
Bayesian approach to measuring reliability, the fractiles of the Bayesian pos-
terior distribution shown above are nevertheless relevant, since sample esti-
mates of Bayesian and classical confidence intervals are identical.

We soon see that the results for IBM are typical. With samples of five years
of monthly returns, there is always substantial uncertainty about the values
of §; for individual common stocks.
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E. Testing the Assumptions Underlying
the Coefficient Estimators

With either the classical or the Bayesian approach, there are two major as-
sumptions from which the properties of the market model regression coef-
ficient estimators derive. The first assumption is that the joint distribution of
R; it and R m: is bivariate normal. The second wwmcavcoz is that there is ran-
dom sampling from the stationary joint distribution of R; i+ and w:: The pur-
pose of this section is to describe how one might judge the validity of these
two assumptions. This is an important task. The validity of the inferences
from estimates of parameters depends on whether the assumptions that
underlie the statistical techniques used are a good approximation to the data
at hand. It is always well to check that this is true.

THE IMPLICATIONS OF BIVARIATE NORMALITY

The assumption that the joint distribution of R;; and m;: is bivariate nor-

mal has three major implications that are the basis of the market model and
of the properties of the market model coefficient estimators. First, bivariate
normality implies that the regression function E Aw it|Rm;) is a linear function
of R,,.;. Second, the market model disturbance €;, has a normal distribution,
as do the returns m: and me:. Third, the expected value of &, is zero, and
€;; is independent of msa that is, the conditional distribution of €, is the
same for all values of R,,;. The first and third implications are summarized in
equations (1) to (6).
" Using the sample results for IBM for July 1963-June 1968, let us ex-
amine first the implication of bivariate normality that the distributions of
x.: ws: and €, are normal. We rely on the studentized range introduced
and used extensively in Chapter 1. Recall that the studentized range is the
difference between the largest and smallest of the sample values of a random
variable, divided by the sample standard deviation. From the sample results
for July 1963-June 1968, we get

Studentized Ranges

Rit(IBM) Bme ajt

4.05 6.06 4.56

From Table 1.9 we determine that the sample studentized range (SR) for
Ry, 6.06, is between the 99 and 995 fractiles of the distribution of the
studentized range in samples of size 60 from a normal population. Thus, in
sampling from a normal population, there is less than a 1 percent chance that
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a sample will yield a studentized range as large as or larger than 6.06. On the
other hand, the studentized range for the monthly returns on IBM is 4.05,
which is between the .05 and .10 fractiles of the distribution of the student-
ized range, while the studentized range of the residuals is 4.56, which is al-
most midway between the .10 and 90 fractiles. The range of the returns on
m is unusually large for a sample from a normal population; the range of the
returns on IBM is slightly small for a sample from a normal population, while
the range of the market model residuals is not at all unusual for a sample
from a normal population. One might conclude that the sample returns for
R;, and e;; are consistent with normality but those for R,,,, are not.

From one viewpoint, nonnormality of m:: is not critical. Recall from
Chapter 3 that the distributional properties of the market model coefficient
estimators do not require that the distribution of ms ¢ be normal. The critical
assumptions are random sampling and normality for the disturbances €;,, and
the studentized range of IBM’s residuals is consistent with the hypothesis of
normality for €;,. From the viewpoint of the two-parameter portfolio model,
however, which is based on the assumption that all portfolio return distribu-
tions are normal, it is disturbing if the market portfolio m, which is repre-
sentative of a diversified portfolio, has a return distribution that is substan-
tially nonnormal.

There is the possibility that the extreme studentized range for R,,,, for July
1963-June 1968 is due to chance, so that the distribution of m:: is not so
nonnormal as this five-year period might suggest. To check this possibility, we
examine the studentized ranges for R,,, for various subperiods from Feb-
ruary 1926 to June 1968:

Period 2/26-12/30  1/31-12/35  1/36-12/40  1/41-12/45  1/46-12/50

SR{Rm) 4.75 5.29 5.94 4.42 4.46
T 59 60 60 60 60

Period 1/61-12/65  1/56-12/60 1/61-12/65 1/66-6/68

SR(Rmp) 442 5.12 5.78 483
T 60 60 60 30

Two of these studentized ranges, those for 1/36-12/40 and 1/61-12/65, are
extreme in the sense that they exceed the 975 fractile of the relevant sam-
pling distribution of SR in Table 1.9; and two, those for 1/31-12/35 and
1/66-6/68, are also extreme (but less so) inasmuch as they exceed the 90
fractile of the relevant sampling distributions of SR. On the other hand, the
studentized ranges for the remaining five periods are quite consistent with
what would be expected from normal populations. Three of them, those for
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the three five-year periods 1941-1955, might even be said to fall slightly into
the left tail of the relevant sampling distribution of SR.

In short, the results are consistent with a distribution for R,,,, that is slightly
leptokurtic relative to a normal distribution, but much less nonnormal than
one might infer from the one studentized range for July 1963-June 1968.
This is, of course, similar to the conclusion that we draw with respect to dis-
tributions of monthly returns on securities and portfolios in Chapter 1, where
frequency distributions and studentized ranges of monthly returns are studied
in detail, and where we conclude that for monthly returns normal distribu-
tions are a workable approximation.

Next we consider the implications of bivariate normality that there is a
linear relationship between R, and m:: and that the disturbances €;, from
this linear relationship are independent of ms: so that the conditions of
equations (1) to (6) hold. Perhaps the best—or, at least in practice, the most
common—way to judge the validity of these propositions is by inspection of
a plot of the sample combinations of R;; and R,,, like that shown in Fig-
ure 4.1, with the estimated regression function also included on the graph.
Obviously, visual inspection can only lead to impressionistic judgments about
the validity of the propositions.

Thus, to judge the validity of the proposition that the regression function
E Am:_w::v is a linear function of R,,,, which is what we mean when we say
that there is a linear relationship between the two variables, we can visually
inspect a graph like Figure 4.1 and judge whether some nonlinear function
might provide a better fit to the sample points. If, as in Figure 4.1, a linear
function seems appropriate, then we can conclude that linearity of the re-
gression function is an appropriate approximation. This allows us to conclude
that the proposition of equation (4), that the conditional expected value of
€;r is independent of R,,,, is also an appropriate approximation to the data;
that is, if the regression function E Am:_wib is a linear function of R,,,,
then mAm:_wazv must be zero for all values of R,,,,.

A graph like Figure 4.1 can also be used to judge the validity of the state-
ment of equation (5) that the variance of €;; is independent of R, but a
combination of care and artistry is needed. In terms of its implications for a
sample, equation (5) says that the dispersion of the sample points about the
estimated regression function should be about the same for different values
of R,,;. But one must be careful in interpreting the word “dispersion.” Ex-
treme values of R,,, are, after all, much less likely than values close to the
mean of Rp,,. Thus, in a sample there are likely to be fewer drawings from
the distribution of €;, corresponding to extreme values of R,,, than there
are for more moderate values of R,,,;. As a consequence, even though
0*(€;;|R,,;) may be the same for all values of R,,,, more extreme observa-
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tions on €;; should be more numerous the closer one is to 016, the mean of
Ryns, since the expected frequency of sample points is higher for intervals
closer to the mean of R,,,. The range of sample points about the estimated
regression function should, however, be about the same at points that are
equal distances to the left or right of the mean of Ry, and extreme devia-
tions of sample points from the estimated regression function should be less
numerous the further one looks away from the mean of R,,;. To my eye,
the results for IBM shown in Figure 4.1 are consistent with these qualitative
statements.

A more formal approach to examining the proposition that 62 (€11 Rpme)
is the same for all values of R,,, is to divide the sample range of R, into
intervals that contain the same number of sample observations and then to
compute the standard deviations of the residuals in each interval. If the
proposition that 0?(€;;|R,,) is the same for all R,,, is valid, these sample
standard deviations should be approximately the same for all the intervals of
R,n¢. Note that, according to the comments of the preceding paragraph, if
each of the intervals of R,,, contains the same number of sample points, then
the closer the interval is to R,,, the smaller the range of values of Ry, it
will cover.

Finally, recall from Section I11.C of Chapter 3 that the sample mean re-
sidual cannot be used to test the proposition of equation (4) that the un-
conditional expected value of the disturbances E(€;;) = 0, since the coef-
ficient estimates b; and a; are defined in such a way that in any sample

T
2 eir
t=1

=0.
T

e; =

Moreover, it is also always true that in any sample,
N.. p—
MU (Rt~ Rm) e =0,
t=1

so that the sample covariance between R, and ¢;; cannot be used to test the
proposition of equation (6) that cov (€1, Rmg) =00.

STATIONARITY AND RANDOM SAMPLING

Having examined the implications of bivariate normality, we now tun to
the questions of whether the joint distribution of ma and mz: is constant
or stationary during the sampling period, and whether successive paired values
of the monthly returns can be regarded as independent drawings from the
joint distribution of the returns.
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Time series plots of returns and residuals. Figures 4.2 to 4.4 present plots
against time of the monthly 1BM returns, the monthly returns on the market
portfolio m, and the monthly residuals from the estimated market model re-
gression function. Such time series plots allow us to judge whether the distri-
butions of the returns and residuals remain constant during the sampling
period. Specifically, the time series plots are excellent for judging whether

FIGURE 4.2
Time Series Plot of Monthly Returns on IBM for July 1963-June 1968
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FIGURE 4.4
Time Series Plot of the Market Mode! Residuals for I1BM for July 1963-June 1968
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the variances of the variables change through time, and this is an important
question. For example, the assumption that the disturbance variance 0%(&;)
is constant through time is used to derive the expressions for the conditional
variances of the market model coefficient estimators. The plot of the residuals
in Figure 4.4 does not seem to raise serious doubts about this assumption.
The plots of R; and R,,, likewise do not suggest any obvious changes during
the sampling period in the behavior of the monthly returns on IBM and on
the market portfolio m.

With plots like Figures 4.2 to 4.4, however, one can only judge changes in
the separate behavior of the returns and residuals, whereas the assumption is
that the joint distribution of M: and w:: is stationary during the sampling
period. This assumption indeed implies that the distributions of returns and
residuals are stationary, but it also implies that the market model regression
coefficients o; and §; are constant during the sampling period. We discuss
this proposition later.

Autocorrelations of returns and residuals. To some extent, Figures 4.2 to
4.4 can also be used to judge the assumption of random sampling. With ran-
dom sampling from the bivariate distribution of hw: and m::, successive
values of M..n are independent, as are successive values of m:: and €. In
terms of Figures 4.2 to 4.4, this means that there should not be runs of higher
than average or lower than average returns or residuals, above and beyond the
runs that would be expected by chance. Equivalently, through time the re-
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turns and residuals should be randomly scattered about their respective
means.*

Although the plots always provide valuable insights and familiarity with the
properties of the data, some amount of bunching through time of high or
low returns or residuals is to be expected on a purely chance basis. This
makes visual inspection of the behavior of the variables a tricky procedure for
judging whether any patterns observed are consistent or inconsistent with the
assumption of random sampling. However, quantitative procedures for testing
the assumption of random sampling are also available. Fortunately, these
procedures are based on statistical concepts that we have already studied.

Let us illustrate the approach in terms of the returns M:. The goal is to
measure the relationship between the returns xea and R i,t-r, that is, returns
7 months apart. Suppose we are willing to limit attention to a possible linear
regression function relationship of the form

EQRy|Ri 1) =8, +7:R; 1+ (29)

so that the return can be expressed as

Ri=8;+ v Ripr + B (30)
Finally, we assume that the process generating the returns is stationary
through time; that is, the process is the same for all ¢, so that, as indicated
in (29), the coefficients §, and 7, in the relationship between M: and M..Ta
are the same for all 7.
From Section II of Chapter 3, we know that if §, and 7, are defined in the
usual way as

_cov (R, R 4-r)

T Ry M4t ERD) 1 ERy), B
then
cov (£ir, R 1-7) = 0.0, (32)
so that
02 (Rig) = 7202 Ry, 1-1) + 0*(iy). (33)

*The statistical properties of the market model coefficient estimators discussed in
Chapter 3 require random sampling from the distribution of the disturbances ¢;;. But
when the properties of the estimators are not based on assumed bivariate normality for
Ry and m::: random sampling from the distributions of R,,,, and M.M: is not necessary.
We find in Chapter S, however, that independence through time of security and port-
folio returns is an important issue in its own right. Thus, it helps to set up our later
work if we now discuss testing for time series independence both for the returns M:
and K,,,; and for the disturbances ¢},.
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It then follows that if we define the correlation coefficient between m:
and R; ;_, as
cov (Ryp, Ry ;1)

Ry Riyog) = ——0 (34)
p(Rit bt ) QQNEVQQN_.,T.L

then the coefficient of determination
cov (R, R; ¢-1) ? QwQNAk.. r-1)

2 l. ?. = = — = = 35
e PF T ARY B )

is the proportion of the variance of m: that can be attributed to the linear
relationship ggoo: R, and m.: r—that is, to the term .*Lmi r in (30)—
while 1 - p*(Ry, R, 1) is 0*(£;)/0*(R;), the proportion of the variance of
R; ;¢ that can be attributed to the disturbance &;, in (30).

The correlation coefficient between w: and x.. ;-7 is given a special name:
it is called the autocorrelation for lag 7. It is also sometimes called the serial
correlation for lag 7. The assumption that the statistical process is the same
for all ¢ implies that the standard deviation of R;; is the same for all 7,

0(Rir) = 0(R; 4-7) = 0(R)). (36)

It follows from (36) that the autocorrelation for lag 7 is also the linear regres-
sion coefficient ,. Under the latter interpretation, it is called the autore-
gression coefficient for lag 7.

The sample estimators of &, y,, and p(R;,, mm_ ¢-r) are defined in the usual
way: we simply plug in sample estimators of the covariance, the means, and
the standard deviations that appear in (31) and (34). We have

T . . . ~
o~ 2 Riu-Ri)Ryer- Riy-r)
. SRy, Ri¢ ;) L ihs)

W.ﬂ = 2 o T ~ AW\\V
s Qm_.TL M,. Ax..kla - x_.knﬂvw
1=T+1
dr =Ry~ &Riss (38)
No ~
2 Ry
P t=T+1
Ry = o, (39)
NA ~
MU N..‘T...
> t=T+1
Rigr= =0T (40)
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To see the logic in these expressions, note that a mm:%_n of T observations
on .z: only yields T- 7 paired observations on x: and ? -7 that can be
used to estimate the coefficients of (30). That is, the sample points, the
paired values of R;, and R; ;_,, that can be used to estimate the coefficients
are the T - 7 pairs

Awh..ﬂ.: > zm_ vu Ax_..‘_l.n s x-.wvv et Aw..ﬂ.. &N...ﬂ.iﬂv.

The estimators of the sample means, variances, and covariances then simply
reflect the fact that the sample observations on R;, are Rirars s RiTs
while the sample observationson R; ;_, are Ry, ..., Ri 7.

One consequence of this way of looking at the sample is that although the
assumed stationarity of the process implies

ERip) = EQR; 1-7) = E(R),
this equality does not hold for the sample estimators; that is,
Riy#Ri s
Likewise, although stationarity implies (36), nevertheless in any sample
S (Rig) # 2Ry 1-1)-

Finally, if the sample estimator of the autocorrelation coefficient for lag r
is defined as
~ = .nQ-? it-1)

F(Rits Ryye-1) = % "

N. ~ x ~ o
M QNQ ; x:v Q~...T4 | x...Tav

1=T+1

NA ~ o
M ANS..N..«VN MU QN: T~ ..n ﬂvn

t=T+1 t=T+1

then

ww.ﬂ #* vﬁk..? w.._?qvw
that is, although v, = b%\:, R i,t-7), the sample estimators of the two quanti-
ties are not the same.

This last result seems to cause a problem, since either g, or Ax:, it-1)
can be regarded as an estimator of the autocorrelation for lag 7. In practice,
however, as long as the sample period 7 is long—more specifically, as long as
7 is small relative to T—then g; and #(R;,, R; ,-,) will be nearly identical.

The property of the sample autocorrelation that we use most in later

a_mocmm.onw is the fact that, like any sample coefficient of determination,
“F(R;, R i,1-r)° can be shown to be
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T
w.w M Qﬁ.k:an...?qvn
P - t=T+1
r*(Ri, R ¢-1) = T , (42)
M Ak:: NQVN
t=7T+1

which can always be interpreted as the proportion of the sample sum of
squares

N.. ~ o
M Ax: - h:vn

1=T+1

that can be attributed to the estimated linear relationship between ,z: and
x.k . Altematively, 72(R,,, wi #) is an estimator of p2(R;,, R it-1)s
which, from (35), can be interpreted as the proportion of the variance of
x: that can be attributed to the linear relationship between x: and w. t-1-
In applications, we 8:::0:? rely on this “proportion of variance nxv_m:..oa:
interpretation of \QN:, i t-7) as an indication of the degree of dependence
between values of \N: that are 7 months apart. If the proportion of variance
explained by the linear relationship between m: and M.. +-7 is close to zero,
then we conclude that the assumption that returns which are separated by 7
months are independent is a reasonable approximation to the au:_

As usual, we generally want to judge the reliability of A%:. i¢-7) as an
estimator of p(R;;, R; ,_,). Like any other estimator, Ax:,? — ,L is a ran-
dom variable with a sampling distribution; as always, we want mo know how
tightly concentrated the distribution is about the true value of the param-
eter of interest. The analysis of this problem is in general quite difficult,
but fortunately there are some simple results for the case of most interest.
In the applications of this and later chapters, we are almost Eim%w interested
in the distribution of Ax:.x., ¢—7) under the hypothesis that x: and x. -1
are independent, so that be_?wi ;)=00. When o(R;;,R;,.,)= muo
the distribution of Ax.: it-7) in large samples is mvvqox_BEo.:\ normal,
with mean and standard deviation

m,T.Ax:, it- Dl =- (43)

Iﬂ.

1
T-1°

QT.QN.? it- -] = (44)

An individual sample autocorrelation Am:_ m.. t-7) allows us to judge
whether returns T months apart are independent. The discussion above applies
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to any 7, however, so we can compute the vilues of r(Ryy, \M..,TL forr=1,
7=12, etc., and use these to judge the degree of dependence between values
of m: that are separated by one month, by two months, and so forth. If there
does not seem to be an important amount of dependence for any 7, then we
can conclude that the assumption of random sampling—that is, the assump-
tion that successive values of M: are independent—is a reasonable approxima-
tion to the data.

Moreover, although for purposes of illustration the preceding discussion
has been carried out in terms of the returns NN.? the analysis and results apply
to any random variable that can be regarded as a time series. Thus, they can
be used now to help us decide whether the assumption of random sampling
is a reasonable approximation for the monthly returns on IBM, the monthly
returns on the market portfolio m, and the market model residuals for IBM
for July 1963-June 1968. Table 4.2 shows the sample autocorrelations of

TABLE 4.2
Autocorrelation Estimates for the Monthly Returns on 1BM,
the Market Portfolio m, and the Market Model Residuals
for 1BM for July 1963-June 1968

LAG 7 Rj¢li = 1BM) Rme aj¢ ofry)
1 139 RER 213 130
2 .022 .013 ~.071 A31
3 -.003 .103 -.114 132

the three variables for lags 7 =1, 2, 3. The standard deviations of the coef-
ficients, computed from (44), are also shown. For example, the table says
that the sample correlation between values of the return on IBM one month
apart is .14. Thus, we estimate that approximately (.14)? = 02, or only 2
percent, of the variance of R;, for IBM can be attributed to the linear rela-
:ozm_:v cogaos w: and m_ -1, which is consistent with the proposition
that x: and x. ¢~ are independent. Indeed, all of the sample autocorrela-
tions shown in Table 4.2 are in this sense smail, as are the coefficients for
lags greater than 3, which are not shown. We conclude that the assumption
of random sampling is consistent with the data.

We close by noting that since the interpretation of an autocorrelation is
linked to a linear regression function relationship like (29), the autocorrela-
tion is a measure of linear dependence. A linear relationship is just one pos-
sible form for the relationship between lagged values of a random variable.
In practice, however, autocorrelations are the primary tool used to measure

serial dependence.
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PROBLEM LE.

1. Below are the monthly returns on a share of Xerox common stock for
July 1963-June 1968. For convenience, the returns on the market portfolio
m are also shown. Fit the market model to these data. Specifically, compute
b;, a;, s(bi!Rmy»---»Rmt), 8@\ Ry, ..., Rmy), 1},, the studentized
ranges of R;; and e;, and the autocorrelations of R;; and e; for lags
7 = 1, 2, 3. The estimating equation for s(a;|Rpm,- .., Rmr) is (49) of

Chapter 3.

MONTH (t) Rjr Rt MONTH (t) R Rme
7/63 2471 -.0095 1/66 0755 .0435
8/63 1653 0506 2/66 0834 0109
9/63 -.0075 —ofa ¥ 3/66 .0454 -.0219
10/63 2954 0163 4/66 0269 .0337
11/63 0274 -.0068 5/66 -.0406 -.0724
12/63 .1389 .0075 6/66 .0155 -.0046 &
1/64 -.0772 .0201 7/66 -.0738 ~.0127
2/64 .0095 .0270 8/66 -.2191 -.0931
3/64 0784 0314 9/66 -.0148 -.0143
4/64 1141 -.0031 10/66 -.0736 0127
5/64 .2228 0116 ©11/66 .2670 .0382
6/64 -.0013 0154 12/66 -.0366 0162
7/64 -.0935 .0277 1/67 11703 .1428
8/64 -.0420 ~.0090 2/67 0784 0209
9/64 2213 .0370 3/67 1250 0p20 {
10/64 1221 0170 4/67 0228 .0365
11/64 -.1168 .0007 5/67 -.0506 -.0179
12/64 .0450 -.0069 6/67 .0055 0516
1/65 .1255 0567 14 2/67 -.0183 0709
2/65 1239 0278 8/67 -.0173 .0028
3/65 -.0311 .0053 9/67 0651 .0378
4/65 1253 .0359 10/67 0531 - 0359
5/65 .0791 -.0079 11/67 -.0022 .0067
6/65 -.0358 -.0743 12/67 .0395 .0554
7/65 0947 0291 1/68 -.1650 -.0035
8/65 1022 0451 2/68 -.0253 -.0416
9/65 -.0088 .0308 3/68 -.0183 -.0045
10/65 0356 0474 4/68 .1489 1164
11/65 1219 0300 5/68 .0904 .0586
12/65 0313 0327 6/68 -.0182 0192

ANSWER

1. The values of the coefficients, their standard deviations, and so forth
are shown in Tables 4.3 and 4.5.

The Market Model: Estimates 121

II. Evidence on the Risks or Market Sensitivities
of NYSE Common Stocks

A. Comments on Market Model Estimates for Larger and
Smaller Firms

Table 4.3 shows the market model coefficient estimates b; and g;, com-
puted from monthly returns for July 1963-June 1968, for the thirty
common stocks that account for the largest fractions of the total market
value of outstanding shares on the NYSE at the end of 1971. The estimates
of the conditional standard deviations of the coefficients are also shown.
Henceforth we refer to these as the standard deviations or standard errors of
the coefficients; that is, we no longer explicitly include the word conditional,
and the estimates are denoted as s(b;) and s(a;). For each of the stocks, Table
4.3 also shows the sample standard deviation of the market model residuals,
s(e;); the sample coefficient of determination, r3,,; and the sample mean
and standard deviation, R; and s(R;), of the stock’s return. Table 4.4 shows
the corresponding results for a random sample of NYSE stocks.

The first thing to note is that in the results for the larger firms in Table 4.3,
only two of the b; (Xerox and Ford) are greater than 1.0, and most are sub-
stantially less than 1.0. The average of the b; in Table 4.3 is only .61. Inter-
preting f§; as the risk of security i/ measured relative to the average risk of
securities in m, the estimates imply that the risks of the common stocks of
larger firms tend to be substantially less than the average risk of stocks in m.
Alternatively, interpreting §; as the sensitivity of the return on security i to
marketwide factors, the larger stocks seem to have less than average market
sensitivity. In contrast, in Table 4.4, 15 of the randomly selected stocks have
b;>1.0, 15 have b;< 1.0, and the average of the b; is 1.00. Thus, these
stocks do not tend to have either systematically more or less risk than the
average risk in m of all common stocks on the exchange. This is, of course,
exactly what we expect from a random sample.

The second point to note from Tables 4.3 and 4.4 is that there seems to be
a relationship between s(R;) and b;. Generally, the larger the value of b;, the
larger the sample standard deviation of the security’s returns. This result has
two causes, one algebraic and one that is just an empirical finding. First, the
sample sum of squares from which s(R;) is computed can be expressed as

2. (45)

it

M=~

T _ T _
M Ax:l x..vu = &w M QN:S.. wivu +
t=1 t=t t

it
-
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Since Z(R,,; - R,,)? is the same for every security, we can see that the larger
the value of by, the larger the value of s?(R,)) = Z(R,; - Mvu\ﬂ- 1. Second a
universal empirical finding in the literature is that larger values of b; tend to
be associated with larger values of s?(¢;) =  e?,/(T - 2). This relationship can
be seen in Table 4.3, but it is more evident in Table 4.4, where there are more
pronounced differences in the b; of different securities.

Although both components of Z(R;, - R;)? in (45) tend to increase with
by, the residual sum of squares, «.w: must increase less (in percentage terms)
than b} Z(R,,,; -~ Rp)?. This conclusion is implied by the observation that
the sample coefficients of determination, r?,., seem also to increase with b;.
For example, the average values of b; and r?, for the stocks in Table 4.3 are
61 and .20, whereas the average values of b; and st for the randomly
selected stocks in Table 4.4 are 1.00 and .27. Since r},, can be written as

T _
@W M QNS-.. Nivn

2
Tim

1=1
T _
> (Ris- R)?
t=1

a positive relationship between r2, and b; implies that the numerator of this
equation, b} Z(R,,, ~ R,,)?, increases with b; more (in percentage terms)
than the denominator, Z(R;, - R;)?, which in tum implies that X e}, does
not increase with b; as much (in percentage terms) as b? Z(R,,; - R,n)?.

The final point to note from Tables 4.3 and 4.4 is that for July 1963-
June 1968, marketwide factors always explain 50 percent or less of the
sample variances of the returns on the individual stocks shown in the tables.
The sample coefficients of determination r?,, are all .5 or less.

B. Evidence on the Assumptions Underlying the Market
Model Estimates

Table 4.5 shows sample statistics that can be used to test the assumptions
underlying the market model regression coefficient estimates in Table 4.3.
For each stock in Table 4.3, Table 4.5 shows the studentized ranges, SR(R;)
and SR(e;) of the stock’s returns and of its market model residuals for July
1963-June 1968, along with the sample autocorrelations r(Ris, R; ¢-7) and
riey, €;4-7), 7=1,2,3. Table 4.6 shows the corresponding studentized
ranges and sample autocorrelations for the randomly selected securities in
Table 4.4.

Interpreting the squared sample autocorrelations as estimates of the pro-
portion of the variance of R ir or €, that can be attributed to a linear rela-
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The Market Model: Estimates 127
tionship between R, and M...Ta or between €, and €; ,_,, the autocorrela-
tion estimates for both R;, and e;, seem consistent with the assumption that
successive values of m: and of €, are independent. The largest measured
autocorrelations are in excess of .3 in absolute value, implying a 9 percent
estimated explanation of variance, but most of the measured autocorrelations
are much closer to zero. Moreover, when so many autocorrelations for so
many different securities are computed, one can expect a few extreme values
to be observed on a purely chance basis. Attributing the large measured auto-
correlations to chance seems reasonable, since their signs are not systemati-
cally positive or negative.

The studentized ranges shown in Table 4.5 are consistent with the hypo-
thesis that the returns and market model disturbances for the large firms are
from normal distributions. As would be expected under the hypothesis of
normality for m..: most of the values of SR(R;) in Table 4.5 fall into the
central portion of the sampling distribution of SR; and of the “extreme”
values of SR(R)), four are less than 4.07, the .10 fractile of the sampling
distribution of SR, and four are greater than 5.29, the .9 fractile of the sam-
pling distribution of SR. The average of the SR(R,) is 4.62, which is just
about halfway between the .1 and .9 fractiles of the sampling distribution of
SR. Similar comments apply to the studentized ranges SR(e;) for the market
model residuals of the companies in Table 4.5.

A slightly different picture emerges for the randomly selected firms in
Table 4.6. For 12 of the 30 firms, the values of SR(R;) exceed 5.29, the .9
fractile of the sampling distribution of SR in samples of 60 from a normal
population. The distributions of returns for these firms show slightly higher
frequencies of extreme returns than would be expected under the hypothesis
of normality. The studentized ranges for the market model residuals of the
firms in Table 4.6 likewise suggest slight leptokurtosis; nine of the SR (e;) ex-
ceed the .90 fractile of the sampling distribution of SR, while only two of the
SR(e;) are less than the .10 fractile of the sampling distribution of SR. Thus,
the assumption of normality is a better approximation for the returns of larger
firms than for those of randomly selected firms, but even for the latter we
shall continue to see how far the normality assumption can take us in our
theoretical and empirical work.

It would be well to use plots like Figures 4.1 to 4.4 to check the assump-
tions that the joint distribution of m: and m:: is bivariate normal and that
the return distributions are stationary through time for each of the 60 securi-
ties in Tables 4.3 to 4.6. This would, however, consume much space. Suffice
it to say that the graphs for IBM are typical. For other common stocks, plots
of Ry, against R,,,,, like Figure 4.1 » seem roughly consistent with the implica-
tions of bivariate normality; and time series plots, like Figures 4.2 to 4.4,
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seem consistent with the assumption that return distributions are stationary,
at least for five-year subperiods.

Finally, the essence of the market model is that, to a greater or lesser ex-
tent, depending on the value of B;, the returns on all securities are related to
the return on the market portfolio m. That is, the market model equation (3)
says that part of the return on any security i for which B; # 0 is the return on
m. Thus, although we have 60 different firms in Tables 4.3 to 4.6, we do not
have 60 independent samples of returns. One implication of this is that
there can be much interdependence across firms in the sample values of a
given statistic. For example, from equation (45) we can determine that as
long as b; is nonzero, the sample variance of the return on the market port-
folio is a component of the sample variance of the returns on any common
stock. Thus, the sample estimates of return variances for individual firms are
interdependent because each depends on the sample variance of the return on
the market. Likewise, the values of other sample statistics, such as SR (R,) and
r(Ris, Ry ¢_;), are interdependent across firms when there are common fac-
tors that affect the returns on all firms.

One might suspect that there is little or no dependence across firms in the
values of sample statistics, such as SR(e;) and r(ey,, ¢; ,,), which are com-
puted from the market model residuals. However, this is only true if the return
on the market portfolio m does a good job in capturing the effects of com-
mon factors on the retums of individual firms, so that there is little depen-

dence across firms in the market model disturbances €. We shall retum to
this point in Chapter 9.

C. Comparison of Prewar and Postwar Market Model
Parameter Estimates

In Chapter 1 we found that there is a dramatic downward shift in the vari-
ance of the return on the market portfolio m sometime in the late 1930s. We
stated there, without evidence, that a similar downward shift in the variances
of the returns on individual stocks can also be observed at about the same
time. We now present some evidence on this point. We also discuss some
interesting changes in the properties of the market model.

Table 4.7 shows estimates of the market model parameters for 1934-1938
for those securities of Table 4.3 that were listed on the NYSE throughout
the 1934-1938 period. Table 4.8 reproduces the results in Table 4.4 for those
firms in Table 4.4 that were on the NYSE throughout the 1934-1938 period.
The decline in the variability of returns on individual securities from 1934-
1938 to 1963-1968 is evident. Only one firm, Richardson Merrill, shows a
higher value of s(R,) in the later period than in the earlier period. There is
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also a clear-cut decline in residual standard deviations from the earlier to the
later period. Given that s(R,,,) also declined, we can use these results and
equation (45) to conclude that the decline in the variability of a security’s re-
turn generally reflects a decline both in the variability of marketwide factors,
as summarized by R,,,, and in the variability of the disturbance €;;.

Perhaps the most interesting evidence is that the decline in the variability
of m:: is sharper, in percentage terms, than the typical decline in the vari-
ability of €;,. The evidence on this point is in the substantial decline in the
coefficients of determination, r?,,, from the earlier to the later period. On
average, marketwide factors account for 56 percent of security return vari-
ances in 1934-1938 for the securities in Table 4.8, whereas for July 1963-
June 1968, the corresponding average value of r?,, in Table 4.4 is only .27.
Likewise, in the later period the average value of r},, for the stocks of larger
firms in Table 4.3 is .20, as compared to .52 for the earlier period (Table
4.7). Thus, a much smaller fraction of the variance of the return on a moocn.q
can typically be attributed to its market model relationship with R,,, for
July 1963-June 1968 than for 1934-1938.

The decline in the explanatory power of the market model was first docu-
mented by King (1966); Blume (1968) later documented the declines in
ri., 52 (R)), s*(R,,), and s*(e;) in more detail and suggested that the declines
are best interpreted as a shift that took place sometime around 1940. Finally,
Officer (1971) corroborated Blume’s results and investigated several possible
reasons for the decline in r?,,. None of the explanations turned out to be sup-
ported convincingly by the evidence.

D. The Reliability of the Risk Estimates

In &mn_\_ma:m the detailed results for IBM for July 1963-June 1968, we
concluded that the sample estimate b; = .67 left substantial uncertainty with
respect to the value of §;. The same conclusion holds for the other common
stocks we have examined. Thus, from the Bayesian viewpoint, the uncertainty
that remains about f; after a sample has been analyzed is summarized by the
posterior distribution on the parameter. With a diffuse prior, a large sample,
and under the assumption that the joint distribution of m: and m:: is bi-
variate normal, the posterior distribution on the parameter is approximately
normal, with mean E(;) = b, and standard deviation o(B) = s(b;). The values
of b; and of s(b;) for July 1963-June 1968 for each of the stocks in the two
samples discussed above are in Tables 4.3 and 4.4. The impression is the
same as for IBM. The values of s(b,) are large, so that the sample estimates
leave substantial uncertainty about the values of §; for the individual stocks.
We leave it to the reader to buttress this impression by computing some



