v\m

TABLE 1.9
Fractiles SR (p, T) of the Distribution of the Studentized Range in Samples
of Size T from a Normal Population

SIZE OF LOWER PERCENTAGE UPPER PERCENTAGE SIZE OF
SAMPLE POINTS {(p) POINTS (p) SAMPLE
T 005 .01 025 .050 .10 .80 .95 975 .99 .995 T
1.997 1999 2000 2.000 2.000 3
2409 2429 2439 2445 2447 4
2712 2753 2.782 2803 2813 5
2949 3.012 3.056 3.095 3.115 6
3.143 3.222 3.282 3.338 3.369 7
3.308 3.399 3.471 3543 3.685 8
3.449 3552 3.634 3.720 3.772 9
10 247 251 259 267 277 357 3685 3.777 3.875 3.935 10
1 253 258 266 274 284 368 380 3903 4.012 4.079 11
12 259 265 273 280 291 378 391 4.0t 4.134 4.208 12
13 265 270 278 286 297 387 4.00 4.11 4244 4325 13
14 270 275 283 291 3.02 395 4.09 421 434 4431 14
15 275 280 288 296 3.07 402 417 429 443 453 15
16 280 285 293 3.01 3.13 409 424 437 451 462 16
17 284 290 298 3.06 3.17 415 431 444 459 469 17
18 288 294 302 3.10 3.21 421 438 451 466 4.77 18
19 292 298 3.06 3.14 3.26 427 443 457 473 484 19
20 295 3.01 3.10 3.18 3.29 432 449 463 479 49N 20
30 3.22 327 3.37 346 358 470 489 506 526 539 30
40 341 346 357 366 3.79 496 515 534 554 569 40
50 3.57 3.61 3.72 382 394 515 535 554 577 5N 50
60 369 3.74 385 395 4.07 529 550 570 593 6.09 60
80 3.88 393 405 4.15 4.27 5561 673 593 6.18 635 80
100 402 400 420 431 444 568 590 6.11 636 654 100
150 430 436 447 459 472 596 6.18 639 664 684 160
200 450 456 467 4.78 4.90 6.15 638 659 685 7.03 200
500 506 5.13 5.25 537 5.49 672 694 715 742 760 500
1000 650 557 568 6.79 592 741 733 754 780 799 1000
Source: H. A. David, H. O. Hartley, and E. S. Pearson, "'The Distribution of the Ratio, in a Single

Normal Sample, of Range to Standard Deviation,” Biometrika, 61 (1954): 491. Reprinted by

permission.

CHAPTER

The Distribution
of the Return
on a Portfolio

The next empirical question concerns the relationships between the returns
on individual stocks and market returns. To what extent are returns on indi-
vidual securities associated with or explained by market returns, as repre-
sented, for example, by the return R,,,, on the equally weighted index or
portfolio of NYSE common stocks?

Study of this topic requires two chapters of preliminary discussion of
statistical concepts. Many of these concepts are also relevant for the model
of portfolio selection pursued at length later in the book. Thus, to enliven the
discussion of the new statistical tools and to set the stage for the later work in
portfolio theory, this chapter introduces some concepts from portfolio theory
and uses them as the framework for the discussion of new statistical tools.

The first step is to show how the return on a portfolio is related to the re-
turns on the individual securities in the portfolio.

I. A Portfolio’s Return as a Function of Returns on Securities

Consider a particular portfolio (call it p) and let A;,, be the number of dollars
invested in security i at the end of month ¢ - 1 (which, in a discrete time
framework, is also the beginning of month ?). Let R;, be the simple return on
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the security from the end of month 7 - 1 to the end of month ¢. The return is
as defined by equation (13) of Chapter 1, so that m: is the return from the
end of month ¢ - 1 to the end of month ¢ per dollar invested in security i at
the end of month ¢ - 1. As in Chapter 1, the tilde (*) on ..m: indicates that
the return is a random variable at £ - 1.

At the end of month ¢, the dollar value of the investment A;

ip 18
hip + hipRi¢ = hip(1 + Ry,);

that is, the end-of-month value is the initial investment hip plus the dollar
return Fww ¢ If n is the number of securities, the end-of-month doliar value
of the portfolio is

n

n n
M hip + M h = M Fﬁﬁ +R;;).

i=1 i=1 i=1

The end- o?:oar value of the portfolio can also be expressed as A(1 +
Ev where wE is the return on the portfolio p for month ¢ and

n
= M \:.E. Amv
i=1
are the total funds invested at the beginning of the month. It follows that
~ n n ~ n e
PrhRpt =2 hip * 3 hipRie =+ 3 hipRir,
=1 i=1 i=1

so that

~

= 3 hipRis; )

that is, the dollar return on the portfolio can be expressed either as the total
investment times the return on the portfolio or as the sum of the dollar re-
turns on the investments in each of the securities. If we let

h
Xip =7, ©)
so that
n
2 Xip=1, )
i=1

then dividing through both sides of equation (2) by h, we have

n ~
= .M_ XipRir. (5)
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The quantity x;, is the proportion of total portfolio funds 4 invested in
security i to obtain portfolio p. Thus equation (5) says that the return on
portfolio p is a weighted average of the returns on the individual securities
in p, where the weight applied to a security’s return is the proportion of port-
folio funds invested in the security.

One example of a portfolio is the equally weighted index of NYSE stocks
studied in Chapter 1. For this portfolio

~=
mi =y 2 R

.(

n ~
=3 XimRir,
in1

where n is the number of securities on the NYSE at the end of month ¢ - 1.

In describing the collection or set of portfolios from which an investor can
choose, it is convenient to let n be the total number of securities that are
candidates for inclusion in portfolios. Then, given the returns on the n secu-
rities for month ¢, the only reason that different portfolios have different
returns is that the weights or proportions of portfolio funds invested in
securities vary from portfolio to portfolio. In this sense, the weights x;,,

=1,2,...,n,define or characterize the portfolio p. It is understood that
some of the x;, can be zero, which means that some securities do not appear
in portfolio p.

II. The Mean and Variance of a Portfolio’s Return

As indicated by the tilde notation, at the end of month ¢ - 1 the returns for
month ¢ on securities and portfolios are random variables; that is, the values
of the returns that will be observed can be thought of as drawings from prob-
ability distributions. Since the return on a portfolio is a weighted sum of the
returns on the securities in the portfolio, determining how the distribution of
the return on a portfolio is related to the distributions of returns on securities
involves, in statistical terms, determining how the distribution of a weighted
sum of random variables is related to the distributions of the individual
summands.

The problem is simplified by the fact that the portfolio models of this book
are based on the assumption, supported by the empirical work of Officer
(1971) and Blume (1968), and the data presented in Chapter 1, that, at least
for monthly post-World War II data, distributions of portfolio returns, like
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distributions of returns for individual common stocks, are approximately
normal. A normal distribution can be completely characterized from knowl-
edge of its mean and standard deviation. Thus, the problem reduces to one of
determining how means and standard deviations of portfolio retumns are re-
lated to the parameters of distributions of returns on securities. In statistical
terms, the problem is to develop expressions for the mean and standard devia-
tion of a weighted sum of random variables.

Since the object of the book is to teach finance, not statistics, most of the
relevant results are just stated in the text, with proofs left for the problems.

i
t

A. The Mean or Expected Value of the Return on a Portfolio

Since a portfolio’s return is a weighted sum of returns on securities, to
describe the mean and standard deviation of a portfolio’s return we must first
know something about the means and standard deviations of weighted ran-
dom variables. There are two general results. First, the mean (or expected
value, or expectation) of a constant times a random variable is the constant
times the expected value of the random variable. Thus, for any constant «
and any random variable J,

E(oy) =aE(Y). ©)

Second, the variance of a constant times a random variable is the constant
squared times the variance of the random variable, so that the standard de-
viation of a constant times a random variable is the absolute value of the con-
stant times the standard deviation of the random variable:

o’ () = a’e*(§) Q)
o(ay) = lalo (). ®
The absolute value sign is necessary in (8) since the constant a could be

negative and the standard deviation of ay, like any standard deviation, must
be nonnegative.

PROBLEM ILA
1. Derive equations (6) and (7).

ANSWER
1. Let f(y) be the density function for the random variable y, assumed to
be continuous. Then
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E(y)= % ayf(y)dy
Yy

=@ .\ yA(y)dy

¥

and

o*(0y) = E{[oy - E()]*}

L. [oy - E(a3))*f(»)dy
y

- a Ly - EG)*A(»)dy
y

= a?0%( ).

Although this interpretation is not rigorous, the nonmathematical reader
can consider the integral notation [), dy as calling for a “sum” over all pos-
sible values of y. Note that since we are summing over all possible specific
values of , in the above equations there are no tildes over the y’s that follow
an integral sign.

The reader will find it instructive to rewrite the expressions above for a
discrete random variable y. This involves interpreting f( y) as a probability
function rather than as a density function and substituting the summation
symbol £, for the integral notation [, dy. The reader should always interpret
what he or she does in words.

The return on a portfolio is a weighted sum of random variables. The mean
or expected value of a random variable which is itself a weighted sum of ran-
dom variables is the sum of the weighted means or expected values of the
variables that make up the sum. Thus, if ¥, . . ., ¥, are n arbitrary random
variables and a4, . . . , a,, are arbitrary weights, then

: !
MAM,\ QC‘._.V uMEMQ..v. on
i=1 i=1

Expressed verbally, the expectation of a sum of weighted random variables is
the sum of the weighted expectations.

Applying (9) to equation (5), the expected return on any portfolio p is
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- n - n -
ER,p) umA 5" é.?.‘v = 3" xipERy). (10)
=1 i=1

Thus, the mean or expected return on a portfolio of n securities is the
weighted average of the means of the returns on individual securities, where
the weight applied to the expected return om a given security is the propor-
tion of portfolio funds invested in that security.

The results stated in equations (6) through (10) are used repeatedly in this
and later chapters.

PROBLEM ILA
2. Establish (9) for the two-variable case; that is, show that for any two
constants a; and o;; and any random variables 3, and 7, ,

E(a, 7, +0233) =, E(3)) + 0, E(J7).

The answer requires some familiarity with the concepts of joint, conditional,
and marginal probabilities, and some familiarity either with multiple integrals
or multiple sums.

ANSWER

2. Let f(y,, y,) be the joint density for the random variables 3, and 7, ;
that is, f(,, ¥2) gives the likelihood that a joint drawing of ¥, and y, will
yield the particular pair of values of the variables shown as arguments of the
function. The expected value of a, J; + a,J, is then the weighted average of
1 ¥; + azy, over all possible combinations of y; and y,, where the weight
applied to any specific combination is its joint density f(y;, y,).

By, + ay),) =
En..‘u

(ryy + 0¥)f(¥1,y2)dy dy;,

where b:} dyidy, is loosely read “sum over all possible combinations of
Yy andy,.”

Let f(y1ly2) be the density function for ¥, conditional on some given
value y, of y,, and likewise let f(y,|y,) be the conditional density function
for y; given that y, is observed in the drawing of 7, . Let

f)= % f(y1,¥2)dy,
Va
be the marginal density function for y,; that is, f(,) shows the likelihood
that y, is observed in the drawing of ', when no constraint is imposed on
what is observed in the drawing of ¥,. Thus, f(,) is just the sum of f(y1,53)
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over all possible values of 3, . Likewise, the marginal density function for y,
is

f(y2) n\‘ (Y1, y2)dy,.

M

Since the joint density f(y,, y;) can always be expressed as

f(y1,y2) =f(ily)f(y2)

or as
f1,y2) = f(yaly)f(»),

the equation for E(a; y; + &, J>) given above can be developed as

(Step 1) E(a1 )1 + ) = 1 Y1 f(y1,y2)dy dy,

Y1, Y2

+ ‘\. Y2 f(¥1,y2)dy.dy,
Y2

(Step 2) ng_a‘u Sy )f(y1)dy.dy,

Vs Va

+a, .‘, Y21l y2)f(y2)dy dy,
%—..‘u
(Step 3) =ay .‘. .V—\C:v.‘» f(y2ly1)dy.dy,
N Ya

+3\ E»\CJV,\- f(»1ly2)dydy,
¥

V2 )

yY1if(y1)dy, +a, .\ y2f(¥2)dy,
Y2

(Step4) =a, ~‘.

N
(Step 5) =, E(J1) + 0, E(J3).

Step 2 makes legitimate rearrangements of the terms in step 1. Step 4 takes
account of the fact that the conditional probability distributions of step 3 are
bona fide probability distributions; that is, for any given y, the sum of
f(»y11y2) over all possible values of y, is 1:
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.‘. f(yiiy)dyy =1,
Yy

1

and likewise

f(raiydy, = 1.
Y3

Again, the reader may want to rework this problem for the case where the
random variables y; and y, are discrete rather than continuous.

The expected value of a portfolio’s return is the weighted sum of the ex-
pected values of returns on its constituent securities irrespective of the pres-
ence or absence of dependence among the security returns. This is not gen-
erally true for the variance of a portfolio’s return. The variance of a portfolio’s
return is in part determined by the variances of security returns, but it is also
determined in part and often primarily by the degree of dependence or co-
movement in the returns on different securities.

The notation used in the discussions that follow gets rather involved. To
simplify things a little, we no longer explicitly include the subscript ¢ on re-
turns and on the parameters (e.g., means and variances) of distributions of
returns. This should not cause confusion, since the specific period ¢ to which
the various quantities refer is of no particular importance. Thus, we now write
equations (5) and (10) for the return and expected return on portfolio p as

n
Nv = M XNE”.. Aumv

ER)=E(3 xp m..v =3 xi,ER). (12)
i=1 i=1

B. The Variance of the Return on a Portfolio

As for any random variable, the variance of the return on a portfolio is
o*(R,) = E{IR, - ER,)I*} .
With equations (11) and (12), QNQMuV can be rewritten as
2

@) =E([ 3 xip®; - BRD)
i=1
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This expression calls for the expected value of a sum of weighted random
variables. To see what is involved, it is best to begin with the simple case, n =
2. Then the preceding expression becomes

0*R,) = E([x1p (R, - E(R))) + x5, (R, - E(R,))]?)
=E(x}, [Ry - ERDI? +x3,[R; - E(R,))
+2x,,%2p [Ry - ERD IR, - E(RY)).

Since R, and R, are random variables, the cross-product [R; - E(R,)]
;m.n - MQM\»: is a random variable, as are the squared differences from means
[R, - ERDI? and [R; - E(R;)]?. In general, the value of any nonconstant
functicn of one or more random variables is itself a random variable. Thus,
the preceding equation says that QnQMﬁv is the expected value of a sum of
weighted random variables. Since the expectation of a sum of weighted ran-
dom varjables is the sum of the weighted expectations of the component
variables, we have

0*(R,) = xLE([R, - ERI?) + x3,E(R; - ER)]?)
+ 2x,x2,E([Ry - ER)] R, - ERRY))). (13)

The expressions E([R, - E(R,)]*)and E([R, - E(R,)]?)are the return vari-
ances 0*(R,) and 6(R,). To complete the interpretation of the preceding
equation, we need only interpret the quantity E([R, - E(R,)] [R; - E(R,)])
called the covariance between R, and R,. The covariance E([R, - ER))]
%.N - E(Ry))isan expected value which is evaluated by weighting each possible
value of [R, - E(R,)] [R, - E(R,)] by f(R,,R,), the joint density or likeli-
hood of observing that combination of R, and R, in a joint drawing of m\_
and \.MN , and then “summing” over all possible combinations of R, and R,.
In formal terms, the covariance between the returns on any two securities i
and j is denoted either as cov AM... uﬂ.v or as 0y, and is defined as

cov (R, R)) = 0; = E([R; - ER)] R; - ER})})
= % [Ri - ER)) [R; - ER)) f(Ri, R)dRdR;. (14)
k...k\.

As in Problem I1.A.2, the integral notation |, RiR; dR;dR; calls for a “sum”
over all possible combinations of R; and R;.

As its name implies, the covariance is a measure of the degree of covaria-
tion (or comovement or association) between the returns on securities i and
j. In intuitive terms, the covariance is positive if deviations of \N. and m\. from
their respective means tend to have the same sign, and it is negative if the
deviations tend to have opposite signs. When the covariance is positive, we say
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that there is positive association or dependence between R; and R;; roughly
speaking, the returns on the two securities tend to move in the same direction.
A negative covariance indicates negative association or dependence; the
returns on the two securities tend to move in opposite directions. The covari-
ance concept appears so frequently in future discussions that a thorough
understanding evolves naturally.

PROBLEM ILB .
1. The random variables 7;, Js, . . . , J, are statistically independent if

fuya, ) =fD)2) - f(n);

that is, if their joint density is always the product of their marginal densities.
Equivalently, statistical independence says that the likelihoods of different
specific values of y; do not depend on the values observed for the other n - 1
random variables. Show that if for all possible y; and y;

Fny) =),
then
cov (3;,5) =0;
that is, independence implies zero covariance. Warning: The reverse is not
true; zero covariance does not necessarily imply independence.

ANSWER
1. From the general definition of a covariance in equation (14),

cov (J;, ) = [yi- EGN ;- EOD1 (i, y))dyidy;.
.VT!N.

Since J; and ; are assumed to be independent,

cov (33, )p) = % [yi~ E(GDY ;- EGPI () f(yj)dyidy;
Yi¥j

Lyi - EGOLf (o) \ Ly, - EG)I Gy

Yi Yj
[E() - EGIEG) - EG)
=0.
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With all the terms in equation (13) now interpreted, the variance of the
return on a portfolio of two securities becomes
0*(Rp) =x3p0*(Ry) + x3,0%(Ry) + 2X1pX2p012, n=2.

Following precisely the same arguments for portfolios of three securities, we
obtain

QNAva = kvaNA%_v + kvaNAxuv + thauﬁkuv
+ 2x1pX2p012 + 2X1pX3p 013 + 2X3pX3p053 -

The new terms are the variance of the return on security 3 and the covariances
between the returns on security 3 and the returns on securities 1 and 2.

PROBLEM IL.B.
2. Derive the preceding equation for e»%wv when n = 3.

ANSWER

2. Go back to the beginning of Section I1.B and retrace the development of
the equations, but for the case n = 3.

The same arguments also produce the general result that the variance of the
return on a portfolio of n securities is the sum of the weighted variances of
the returns on the individual securities in the portfolio plus twice the weighted
sum of all the different possible pairwise covariances between the returns on
individual securities. The weight applied to the variance of the return on
security i is the square of the proportion of portfolio funds invested in secur-
ity 7, while the weight applied to the covariance between the returns on
securities / and j is the product of the proportions of portfolio funds invested
in these two securities. In formal terms, in the n security case, QNAM“.V is

208 Y=+2 2(D 2 _2/n 2 2p
0*(Rp) =xip0 (R} + x3,0%(Ry) + . .. +x02p0*(Ry)
+2X1pX2p0y2 + 2x1pX3p013 ..+ 2X1pXppO1p
+ NRNEHwEQNw + NH»ER&!QN& +...+ NXNEHBEQNR

+2x3px4p03a + 2X3pX5p035+ .. .+ 2X3pXppOan

+2Xp_3,pXnp On1,n> (15)
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or equivalently,
”n
NQN )= M“xi 0*(R;)+2 M > XipXjp 0y, (16)
i=1 j=i+t
where, as indicated by equation (15), the double sum
i=1 j=i+l

is read “for each value of i fromi=1toi=n- 1,sumoverjfromj=i+1to
j = n;then sum the results over i fromi=1toi=n-1."

Equation (16) is not the only expression for the variance of the return on a

portfolio. For example, from (14), it is clear that the order of the terms in the
cross-product that defines a covariance is irrelevant:

= E([R; - ERD]R; - ER)])

= E([R; - ERD] R - ERD)) = 0j;.
It follows that in equation (16)

2XipXjp Oij = XipXjp Oij + XjpXip i
50 that an expression for QNA@.V equivalent to (16) is

*(R,) = wa xb0*(R) + Mxm W_ XipXjp Ojj. an
i= i=1j=
j*i

Here the double sum notation

M:

3

i=1 j=
j

~ -

is read “for each value of i from i = 1 toi=n,sumoverjfromj=1toj=n,
but omitting terms where j = i; then sum the results over i fromi=1toi=
> Equivalently, the double sum can be read, “sum over all possible combi-
nations of i and j except those where j =i.”
Equations (16) and (17) still do not exhaust the possibilities. The variance
of the return on a security can always be regarded as that return’s covariance
with itself:

0*(R;) = E(R; - ER)]?)
= E([R; - ER)] [R; - ER)Y)

= 0.
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With this notation, the security return variances in equation (17) can be in-
cluded in the double sum, so that

~ n

n
\N M M XipXjp Ojj- AmWV
i=1 j=1

The double sum here is read “for each value of i from i = 1 to i = n, sum over
j from j =1 to j = n; then sum the results fromi=1toi=n";or equivalently,
“sum over all possible combinations of i and j.”

Since

n
M XipXjp =10,

i=t j=1

'M=

equation (18) expresses a»Q.mvv as a weighted average of the n? variances and
covariances 0,(i,j = 1,2, . . ., n). Equation (17) treats the n security return
variances embedded in the double sum of (18) separately from the n(n - 1)
“true” covariances 0;;, j # i, while equation (16) emphasizes that since g;; =
g, only n(n - 1)/2 of the covariances in (17) are different.

Finally, at the moment we are concerned with the variance of the return on
a portfolio, but the preceding analysis is general. That is, (11) can be regarded
as a general expression for a sum of weighted random variables. Equations
(16) to (18) are general expressions for the variance of such a sum, ex-
pressed in terms of the weights applied to the individual summands, the
variances of the individual summands, and their pairwise covariances.

PROBLEMS I1I.B
3. Show that

n n
M M .X-.E.RN.E =10.
i=1 j=1
4. For the case n =4, show that equations (16), (17), and (18) are equiva-
lent expressions for 6%(R, p)-
5. Lety,,¥,,...,7, be arbitrary random variables.

(a) What is the variance of their sum?
(b) What is the variance of their sample mean

~

=21 +u.w~+...+v)~.‘:¢
" ?

(c) What is E(¥) in terms of E(33),i=1,2,...,n?

AN
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- Note that the sample mean is itself a random variable. That is, the value of
y varies from one sample to another, since each of the ¥;,i =1, ..., n, varies
from one sample to another. Thus, this problem and those that follow are
concerned in large part with determining the sampling distribution of the
sample mean.

6. Suppose Jy,¥s, - ..,Vn are independent random variables. What is the
variance of their sum? What is the variance of their sample mean? What is
E(y)?

7. Suppose that yy,¥,, ...,V are independent and identically distributed.
What is the variance of their sum? What is the variance of their sample mean?
What is E(3 )?

8. As an application of the resuits of Problem II.B.7, suppose successive
monthly returns on security i are independent and identically distributed
with mean E(R;) and variance ¢? QM..V. What are the mean and standard devia-
tion of the distribution of the average return on security / for 7 months?

9. As another application of the results of Problem I1.B.7, suppose succes-
sive daily continuously compounded returns on security i are independent
and identically distributed. What are the mean and standard deviation of the
distribution of the continuously compounded monthly return on security i in
terms of the mean and standard deviation of the continuously compounded
daily return?

10. As an application of the results of Problem I1.B.9, look again at Prob-
lem VI.C.3 of Chapter 1.

ANSWERS
3.
n n
2 Xip=1 and Y x;,=
i=1 j=1
Therefore
n n
2 %ip) [ 2 Xjp) =1
i=1 j=1
But
n n n n
.Mux_.w "2 %ip = 2 2 XipXip-
i=1 j=1 i=1 j=1
4. Do it.
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5. Withy,,7,, ..., 7, as random variables,

(2)

n 2

m (i - EG) (5 - EG)]

Mx
W ™M=

M=
M:

cov AV.L\\V

l

H
-

1j

Thus the variance of a sum of random variables is just the sum of all
the pairwise covariances, which also includes, of course, the n vari-
ances 62(9)),i=1,...,n.

—

(b) From equation (18), with each x;, = —

>

B

1
*(y) =o*(—
n

™M=
-~

-,
H
-

=|-—
R[»—

£M=

s

1
|~

W M;

Alternatively, this result follows from the answer to (a) and the fact
that the sample mean is just the sum of random variables treated in
(a) multiplied by the constant 1/n.

(c) E(y)=E Ms =

.u.

M‘.U E(y)).

1
n
6. If ¥\, ..., J, are independent, 0;; = 0, i # j. Therefore

MU .M-_U.que_.\,uwo:. W ()
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Thus, the variance of a sum of independent random variables is the sum of
the variances of the component variables, while the variance of the sample
mean is (1/n)? times the sum of the variances. Finally,

LD RAREDW-E
n m“n.‘- n = .V\n

7. 1f 9,,...,7, are identically distributed, ¢*(7;) = 0*(y;) for all i
and j; equivalently, o®(7;) = 0*(¥), i=1,...,n. Moreover, E(y,)=E(y),
i=1,...,n.Then

mﬁm& =~ 3 B = 2B =E).

These are important results. Thus, suppose y;,i=1,...,n are n indepen-
dent drawings of a random variable §, and we want to use the sample to esti-
mate the population mean E(J). If we use the sample mean

ypt... .ty
u{ (19)

=R

as the estimator of the population mean £(¥), then the preceding results tell
us that the estimator is unbiased, which means that E(5), the mean of the
sampling distribution of the sample mean w, is equal to E()), the mean of the
distribution of J. Moreover, since 62(¥) = 6*(5)/n, the larger is the sample
size n, the more tightly packed the sampling distribution of ¥ about its mean
MCQ E(9). In intuitive terms, the _Emﬁ the sample size on which y
based, the more reliable is the sample mean ¥ as an estimator of £(7). In :5
limit—that is, as n becomes arbitrarily large—a( u\v approaches zero, so that
the sampling distribution of the sample mean becomes arbitrarily tightly
packed about va = E()).

The preceding paragraph introduces some new statistical terms whose
definitions should be emphasized. A procedure for estimating a parameter
from a hypothetical sample is called an estimator. For example, the sample
mean y defined in equation (19) is an estimator of the population mean
E(¥). The value y of ¥ obtained from a specific sample y, , . .. ,p, is called
an estimate of the population mean. The properties of an estimator are de-
scribed by its probability distribution, which is usually called its sampling
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distribution. The estimate obtained from a specific sample is a drawing from
the distribution of the estimator.

One property that an estimator might have is unbiasedness. This means that
the mean or expected value of the estimator is equal to the value of the
parameter being estimated. Thus, the sample Bombw is an unbiased estimator
of the population mean E(§), since E(}) = E(J).

Another example of an estimator is the sample variance

n ~
2(F)=3 i~ 5P -,
i=1
which is an estimator of the population variance ¢2(5). Now that we know
what unbiasedness means, we can state (without proof) that the purpose of
dividing by »n - 1 rather than n is to ensure that the sample variance is an un-
biased estimator of the population variance; that is, dividing the sum of
squares by n -1 leads to the result that E[s*(y)] = 0*(5). We might also
note (without proof) that the sample variance has the desirable property that

the larger the sample size, the more tightly the sampling distribution is packed
about o*(¥).

8. ER;) =ER))

e 1 ~
0*(Ry) = T 0*(R))

oR) = w\w oR)).

Note again that the distribution of the average return has a smaller standard
deviation than the distribution of the return itself; the larger the sample size
T, the smaller the standard deviation of the average return.

9. Suppose there are T days in the month. If 7;, is the simple return for day
t, then the continuously compounded return for day ¢ is In (1 + 7;,). From
an:m:o: (17) of Chapter 1, the monthly continuously compounded return,
In(1+ R; 1) is related to the daily continuously compounded returns as

- T
In(1+R;)=3 In(1+7).
t=1
Let
EGn(L+7))=p,  t=1,....T
Aln(1+7))=0¢*, t=1,...,T.
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From Problem I1.B.7,
E(n (1+Ry)=Tu
02(in (1 + R})) = To?
o(in 1 +R))) =T o.

10. The answer to Probiem II.B.9 above tells us that if successive daily
retums are independent and identically distributed, the standard deviation of
the monthly returns is approximately the square root of the number of trad-
ing days times the standard deviation of the daily returns. Thus, the results of
Problem VI.C.3 of Chapter 1 are consistent with a world where daily returns
are independent and identically distributed.

III. Portfolio Risk and Security Risk

The preceding results allow some simple insights into the measurement of risk
when probability distributions of returns on portfolios are normal. In such a
world, knowledge of its mean and variance is sufficient to describe com-
pletely the probability distribution of the return on a portfolio, and compari-
sons of portfolios can be made solely in terms of the means and variances of
their returns. Thus, a portfolio model for a world where portfolio return dis-
tributions are normal is called a two-parameter model. ’

In this book, it is also assumed that investors like expected portfolio return
but are risk-averse, which in a two-parameter world means that they are risk-
averse with respect to variance of portfolio return; the most preferred port-
folio among all those with the same level of expected return is the one with
the lowest variance of return. In short, in portfolio models based on normal
return distributions, the risk of a portfolio is measured by the variance of its
return, and investors are assumed to dislike variance of portfolio return.

It is tempting to jump to the conclusion that the risk of a security is also
measured by the variance of its return. In portfolio theory, however, the
presumption is that the primary concern in the investment decision is the
distribution of the return on the portfolio. Investors look at individual
securities only in terms of their effects on distributions of portfolio returns.
In a two-parameter world, an investor looks at an individual security in terms
of its contributions to the mean and variance of the distribution of the return
on his portfolio.

The mean or expected return on a portfolio is just the weighted average of
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the expected returns on the securities in the portfolio. The contribution of a
security to the expected return on a portfolio is k..wm.Q.mL. the expected
return on the security weighted by the proportion of portfolio funds invested
in the security.

From inspection of equations (16) to (18), it is clear that the contribution
of a security to the variance of a portfolio’s return is a somewhat more com-
plicated matter. One important point, emphasized by writing a»Q.mvv as in
equation (17), is that when the number of securities n in the portfolio is
large, individual security return variances are much less numerous in o? QML
than are covariances. In particular, a»%.vv contains only n terms for the
security return variances, whereas there are n(n - 1) covariances. For ex-
ample, with a portfolio of 50 securities, QNQME contains 50 variance terms
and 2,450 covariance terms.

The large number of covariances relative to security return variances in
a2 QM p) does not in itself imply that the covariances dominate the variances in
the determination of Q»Qva. Relative magnitudes are also important. This
question is studied empirically in Chapter 7, where the portfolio model is
presented in detail. To foreshadow the results, at least for NYSE common
stocks, pairwise covariances between individual security returns are nontrivial
in magnitude relative to variances of individual security returns. In portfolios
of 20 or more common stocks, o»Qmuv is primarily determined by the pair-
wise covariances of security returns.

All this assumes that the portfolios are diversified in the sense that funds
are spread fairly evenly across the securities in the portfolio, or at least that
funds are not concentrated in a few securities. For example, if most of the
portfolio is in one security, then that security’s return variance is important
in determining the variance of the return on the portfolio, regardless of how
many other securities are also included in the portfolio.

We have strayed. What about the risk of a specific security? What is the con-
tribution of an individual security to the variance of the return on a port-
folio? To study this question, it is convenient to work with equation (18) and
to rewrite it as

QNAMvVHMRQ Mk\vQQ . ANOV

i=1 j=1

In equation (20), q»%.vv can be interpreted as the sum of n terms, one for
each security in the portfolio. The term for security i is

n
Xip( 2 Xip0i),  i=1,2,...,n.
J=1
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This is the contribution of security i to the variance of the return on portfolio
p. This contribution of security i to QNQNEV is itself made up of two parts:
X,p, the proportion of portfolio funds invested in security /, and

n
.MR\EQ_.T AN—V
j=1

the weighted average of the pairwise covariances between the return on secur-
ity i and the returns on each of the n securities (including security i} in the
portfolio. If we call this weighted average of covariances the risk of security i
in portfolio p, then equation {20) says that the risk of p, as measured by the
variance of its return, is the weighted average of the risks of the securities in
the portfolio where the risk of security i in portfolio p is weighted by the
proportion of portfolio funds invested in this security.

There are two points in this analysis that should be emphasized. First, to be
precise we must always say “the risk of security i in portfolio p” since the
risk of a given security is different for different portfolios. That is, the pair-
wise covariances 0;; in (21) are parameters of the joint distribution of security
returns and thus are the same for all portfolios. The weights x;,,/=1,2,...,n,
vary from portfolio to portfolio, however, and this is why the risk of security
i, as measured by the weighted average of pairwise covariances in (21), is
different for different portfolios.

Second, one of the terms in the risk of security 7 in portfolio p is the vari-
ance of the return on that security, o? me = gy, which is weighted by x;,.
There are, however, n - 1 covariance terms in (21). If the covariances are not
trivial in magnitude relative to o* Qm..v, then in a diversified portfolio the risk
of security i is determined primarily by the covariances of its return with the
returns on each of the other n - 1 securities in the portfolio.

Finally, expression (21) can be put into a form that provides a natural in-
troduction to the next chapter. In particular,

Xjp0ij = cov sz_.kmwv. (22)

M=

]

1

That is, the risk of security i in portfolio p, as described by (21), is also the
covariance between the return on the security and the return on the portfolio.

PROBLEMS H1

1. Derive equation (22).

2. Show that, in general, the covariance of a random variable y with a ran-
dom variable Z = Z]_, a;Z; which is itself a sum of weighted random variables
is the weighted sum of the pairwise covariances:
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~ o~ ~ n ~
cov(V,Z)=cov (¥, > a;Z;
i=1

n ~ A
=3 g cov (7, %),

i=1

ANSWERS
1. The steps are as follows:

cov®,, R,) = cov (R, wu xR, (220)
-E A_m.. ol M xjpR; - E MU_ xpR\|) (22
- AE.. il M Xk - MU_ 5 ER)|)  (220)
um?w ol wu xp(R; - BR)) 220)
- Am x;p (R~ ER)) (R - E®)) (22¢)
= M xp E(IR; - ERD] [R; - ER)]) (229)
= M Xjp0if. (22¢)

In going from (22a) to (22b), we make use of the definition of a covariance as
an expected value. The step from (22b) to (22c) makes use of the result that
the expectation of a sum of weighted random variables is the sum of the
weighted expectations, which is also used to go from (22e¢) to (22f). The final
step from (22f) to (22g) then makes use of the definition of o;; as an expected
value.

2. Except for a trivial change in notation, the steps are (22a) to (22g). The
only point of this problem is to get you to recognize the generality of the
development of equations (22a) to (22g).

It is also convenient to define
_cov R, R p)

Pn QN AMEV

> (23)



